Acta Cryst. (1982). B38, 2450–2452

Cadmiumorthotellurat(VI) Cd₃TeO₆: ein pseudoorthorhombischer Kryolith im Vergleich mit Ca₃TeO₆

VON HANS-GEORG BURCKHARDT, CHRISTOPH PLATTE UND MARTIN TRÖMEL

Institut für Anorganische Chemie der Johann Wolfgang Goethe-Universität, Niederurseler Hang, D-6000 Frankfurt am Main 50, Bundesrepublik Deutschland

(Eingegangen am 21. Dezember 1981; angenommen am 16. April 1982)

Abstract. Cd₃TeO₆, monoclinic, $P2_1/n$, a = 5.4986 (3), b = 5.6383 (3), c = 8.0191 (5) Å, $\beta = 90.00$ (5)°, Z = 2, $D_x = 7.490$ (1), $D_o = 7.2$ (1) Mg m⁻³; R =0.032 (677 observed reflections). Ca₃TeO₆, monoclinic, $P2_{1}/n, \qquad a = 5.5782$ (8), b = 5.7998 (9), c =8.017 (1) Å, $\beta = 90.217$ (5)°, Z = 2, $D_x = 4.403$ (2), $D_{o} = 4.17$ (6) Mg m⁻³; R = 0.033 (625 observed reflections). Single crystals of the title compounds have been obtained by heating 9 CdO: 11 TeO, mixtures in air at 910–1350 K for several hours (Cd₃TeO₆), or by heating 12 CaO: 13 TeO, mixtures under the same conditions at 1375 K (Ca₃TeO₆). Both compounds are isostructural with α -Na₃AlF₆ (cryolite). Cd₃TeO₆ represents a pseudo-orthorhombic variant of this structure with generally less regular coordination of oxygen around tellurium and metal atoms [Te-O distances for octahedral coordination: 1.904(5) -1.948 (4) Å for Cd₃TeO₆, 1.915 (4) – 1.931 (5) Å for $Ca_{1}TeO_{6}].$

Einleitung. Im System CdO - TeO₃ sind die Verbindungen Cd₃TeO₆ (Kasper, 1968; Schmid, 1970) und CdTeO₄ (Sleight, Foris & Licis, 1972) bekannt, die ihre Entsprechung unter den Calciumtelluraten(VI) haben (Baglio & Natansohn, 1969; Trömel, 1972; Hottentot & Loopstra, 1981; Sleight et al., 1972; Hottentot & Loopstra, 1979). Einkristalle von Cd₃TeO₆ und Ca₃TeO₆ erhielten wir aus Mischungen von TeO₂ mit CdO bzw. CaO, die einen geringen Überschuss an TeO₂ enthielten und durch Luftsauerstoff oxidiert wurden. Zur Darstellung von Cd₃TeO₆ wurde eine Mischung der Zusammensetzung 9 CdO: 11 TeO₂ zunächst 20 Stunden an der Luft auf 910 K und anschliessend drei Stunden auf 1350 K erhitzt. Die erkaltete Probe enthielt gelbe stäbchen- oder plättchenförmige Kristalle von $Cd_{3}TeO_{6}$ neben α -CdTeO₃ (Wroblewska, Erb, Dobrowolski & Freundlich, 1979). In entsprechender Weise wurden Ca₃TeO₆-Einkristalle aus Mischungen der Zusammensetzung 12 CaO: 13 TeO₂ nach zehnstündigem Erhitzen an der Luft auf 1375 K neben CaTeO₃ (Trömel & Ziethen-Reichnach, 1970) erhalten. Gitterkonstanten wurden aus

Weissenberg- und Präzessionsaufnahmen bestimmt und nach Zählrohr-Guinier-Aufnahmen (Huber System 600, Cu K α -Strahlung, Quarzmonochromator) mit Pb(NO₃)₂ als innerem Standard verfeinert. Für dieses wurde eine Gitterkonstante von 7,8566 Å bei 294 K (*International Tables for X-ray Crystallography*, 1968) zugrundegelegt. Für Cd₃TeO₆ zeigten die Guinier-Aufnahmen bis $\theta = 80^{\circ}$ keine monokline Reflexaufspaltungen. Die Halbwertsbreiten von 028 und 336 betrugen übereinstimmend 0,096 (4)°, gemessen in θ . Die maximale Aufspaltung des 336-Reflexes wurde hieraus unter der Annahme von Gausskurven zu 0,028°, die maximale Abweichung des monoklinen Winkels von 90 zu 0,05° abgeschätzt.

Die Filmaufnahmen beider Verbindungen zeigten die Auslöschungen 0k0 mit k = 2n + 1, h0l mit h + l = 2n + 1. Daraus folgt $P2_1/n$ wie für α -Na₃AlF₆ (Naray-Szabo & Sasvary, 1938). $P2_1/n$ für Cd₃TeO₆ wird bestätigt durch signifikante Intensitätsdifferenzen der *hkl*- und *hkl*-Reflexe sowie aus den verfeinerten Atomlagen, die sich keiner orthorhombischen Symmetrie zuordnen lassen.

Reflexintensitäten wurden mit einem automatischen Zweikreisdiffraktometer Huber RHD 402 gesammelt [Mo Ka-Strahlung, Graphitmonochromator, ω -2 θ -Abtastung Abtastbreite in ω : 1,2°, in 2 θ ': 2,4°, Winkelbereich 2 θ = 12° bis 2 θ = 70°, Absorptionskorrektur (μ = 18,580 mm⁻¹ für Cd₃TeO₆, μ = 8,697 mm⁻¹ für Ca₃TeO₆) nach Wuensch & Prewitt (1965)]. Die übrigen Aufnahmebedingungen waren:

Cd ₃ TeO ₆	Ca,TeO,
5 6	
0,20	0,20
0,10	0,10
0,05	0,03
[100]	[110]
677	625
53	110
1088	1135
	Cd ₃ TeO ₆ 0,20 0,10 0,05 [100] 677 53 1088

Datenreduktion mit dem XRAY-System (Stewart, Kruger, Ammon, Dickinson & Hall, 1972), wobei für Reflexe mit $I < 3\sigma(I)$ galt I = 0. Atomfaktoren und

© 1982 International Union of Crystallography

Tabelle	1.	Atomkoordinaten	und	isotrope
		Temperaturfaktorer	1	

		-			
	Lage	x	у	Ζ	$B(\dot{A}^2)$
Cd ₃ Te	0, ⁻				
Te	2 (a)	0,0	0,0	0,0	0,20 (3)
Cd(1)	2 (b)	0,0	0,0	0,5	0,49 (3)
Cd(2)	4 (c)	0,5106 (1)	-0,0457 (2)	0,24306 (6)	0,60 (3)
O(1)	4 (c)	0,1200 (9)	0,0704 (8)	0,2231 (5)	0,6 (1)
O(2)	4 (c)	-0,2860 (10)	0,1760 (9)	0,0509 (6)	1,1 (1)
O(3)	4 (c)	0,1633 (9)	0,2810 (8)	-0,0775 (5)	0,8 (1)
Ca,Te	0,				
Te	2 (a)	0,0	0,0	0,0	0,27 (2)
Ca(1)	2 (b)	0,0	0,0	0,5	0,50 (3)
Ca(2)	4 (c)	0,5143 (2)	-0,0525 (3)	0,2459 (1)	0,68 (2)
O(1)	4 (c)	0,1097 (7)	0,0529 (9)	0,2249 (5)	0,68 (6)
O(2)	4 (c)	-0,2820 (7)	0,1760 (8)	0,0476 (5)	0,67 (6)
O(3)	4 (c)	0,1700 (7)	0,2744 (8)	-0,0676 (5)	0,66 (6)

Korrekturwerte für anomale Dispersion wurden den International Tables for X-ray Crystallography (1974) entnommen. Für die Verfeinerung von Ca₃TeO₆ wurden die Atomparameter von α -Na₃AlF₆ (Kryolith; Naray-Szabo & Sasvary, 1938) zugrundegelegt. Das Ergebnis (R = 0,033, Tabelle 1) stimmt mit Hottentot & Loopstra (1981) überein, die ihre Ergebnisse bei Abschluss unserer Untersuchung publizierten. Cd₃TeO₆ wurde mit den Atomlagen der Ca₃TeO₆-Struktur gelöst. In der abschliessenden Verfeinerung (R = 0,032) waren Parameteränderungen/Standardabweichungen <0,01.

Diskussion. In Tabelle 1 sind Atomkoordinaten und isotrope Temperaturfaktoren zusammengestellt.* Ca₃TeO₆ und Cd₃TeO₆ sind isotyp mit α -Na₃AlF₆. Die ungewöhnliche pseudoorthorhombische Metrik von Cd₃TeO₆ kommt unter stärkerer Deformation aller Koordinationspolyeder zustande und stelt keine Annäherung eine echt orthorhombische an Kryolithvariante wie α -Li₃AlF₆ (Burns, Tennissen & Brunton, 1968) dar. In beiden Telluraten ist Tellur nahezu regulär oktaedrisch von Sauerstoff koordiniert (Tabelle 2). Die Te-O-Bindungslängen stimmen mit denen nach Hottentot & Loopstra (1981) und anderen Telluraten(VI) z.B. 1,921 (2) Å in Cu₃TeO₆ (Falck, Lindqvist & Moret, 1978), 1,919 (5) Å in Be₄TeO₇ (Trömel, Maetz & Müllner, 1977) oder 1,912 (3) bzw. 1,914 (3) Å in Mg₃TeO₆ (Schulz & Bayer, 1971) überein. In beiden Verbindungen sind die TeO₆-Oktaeder gegen die c-Achse geneigt, die der kubischen Achsenrichtung in (NH₄)₃FeF₆ (als dem höchstsymmetrischen Vertreter der Kryolith-Familie) entspricht (Pauling, 1924). Die Neigungswinkel zwischen Te-O(1)-Richtung und c-Achse betragen 23° für Cd₃TeO₆, Tabelle 2. Bindungslängen (Å)

Cd ₃ Te	0,			
•	•	O(1)	O(2)	O(3)
	Te	2 × 1,948 (4)	$2 \times 1,904(5)$	$2 \times 1,924$ (4)
	Cd(1)	$2 \times 2,350(4)$	$2 \times 2,211(5)$	$2 \times 2,311(5)$
	Cd(2)	s. Fig. 1		
Ca ₃ Te	06			
		O(1)	O(2)	O(3)
	Te	$2 \times 1,926$ (4)	$2 \times 1,915$ (4)	$2 \times 1,931(5)$
	Ca(1)	$2 \times 2,311$ (4)	$2 \times 2,270(5)$	$2 \times 2,321(4)$
	Ca(2)	2,344 (4)	2,364 (5)	2,363 (5)
		2,402 (5)	2,726 (5)	2,612 (4)
			2,776 (4)	2,956 (4)

Tabelle 3. Bindungswinkel (°)

M = Cd bzw. Ca.

	Cd ₃ TeO ₆	Ca ₃ TeO ₆
O(1)-Te-O(2)	91,3 (2)	90,8 (2)
O(1)-Te-O(3)	91,7 (2)	91,3 (2)
O(2)-Te-O(3)	91,5 (2)	91,2 (2)
O(1) - M(1) - O(2)	96,6 (2)	95,3 (2)
O(1) - M(1) - O(3)	96,9 (2)	94,9 (1)
O(2) - M(1) - O(3)	92,0 (2)	90,2 (2)
O(1)-M(2)-O(1')	89,1 (2)	88,8 (2)
O(1) - M(2) - O(2)	105,1 (2)	105,7 (2)
O(1)-M(2)-O(3)	102,1 (2)	102,6 (2)
O(1')-M(2)-O(2)	138,7 (2)	137,6 (2)
O(1')-M(2)-O(3)	132,1 (1)	133,9 (1)
O(2) - M(2) - O(3)	83,4 (2)	82,3 (2)

Fig. 1. Sauerstoffkoordination von Cd(2) (Abstände in Å, $\pm 0,005$ Å). Symmetrieoperationen: keine x,y,z; (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (ii) $\overline{x}, \overline{y}, \overline{z}$; (iii) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$.

21° für Ca₃TeO₆, dagegen 16° für Kryolith. Cd(1) und Ca(1) sind verzerrt oktaedrisch koordiniert; die stärkere Deformation des Cd(1)-Oktaeders zeigt sich in der stärkeren Streuung der Bindungslängen [Mittel: 2,291 (64) Å gegenüber 2,301 (24) Å für Ca₃TeO₆] und der Bindungswinkel (Tabelle 3). Cd(2) und Ca(2) haben unregelmässige (4 + 4)-Koordinationen; die jeweils vier kürzesten Bindungen bilden ein sehr stark deformiertes Tetraeder [für Cd(2) s. Fig. 1]. Diese Bindungen sind bei Cd(2) deutlich kürzer als bei Ca(2),

^{*} Die Listen der Strukturfaktoren, anisotropen Temperaturfaktoren und Bindungsstärken sind bei der British Library Lending Division (Supplementary Publication No. SUP 36886: 10 pp.) hinterlegt. Kopien sind erhältlich durch: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

2452 CADMIUMORTHOTELLURAT(VI) UND CALCIUMORTHOTELLURAT(VI)

während die nächstlängeren Abstände ähnliche Werte aufweisen (s. Tabelle 2). Abschätzung der Bindungsstärken aus den Bindungslängen (Brown & Wu, 1976)* zeigt, dass für Cd(2) bzw. Ca(2) etwa 80 bzw. 70% der Gesamtbindungsstärke auf die vier kürzesten Bindungen entfallen. Die merkliche Bevorzugung von vier ungefähr tetraedrisch ausgerichteten Bindungen dürfte die Folge des stärker kovalenten Charakters der Cd-O-Bindungen sein.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Förderung dieser Arbeit sowie dem Hochschulrechenzentrum der Universität Frankfurt am Main für Rechenzeit an der Univac 1108.

* Siehe vorhergehende Fussnote.

Literatur

- BAGLIO, J. A. & NATANSOHN, S. (1969). J. Appl. Cryst. 2, 252–254.
- BROWN, I. D. & WU, K. K. (1976). Acta Cryst. B32, 1957–1959.
- BURNS, J. H., TENNISSEN, A. C. & BRUNTON, G. D. (1968). Acta Cryst. B24, 225–230.
- FALCK, L., LINDQVIST, O. & MORET, J. (1978). Acta Cryst. **B34**, 896–897.

- HOTTENTOT, D. & LOOPSTRA, B. O. (1979). Acta Cryst. B35, 728–729.
- HOTTENTOT, D. & LOOPSTRA, B. O. (1981). Acta Cryst. B37, 220–222.
- International Tables for X-ray Crystallography (1968). Bd. III. Birmingham: Kynoch Press.
- International Tables for X-ray Crystallography (1974). Bd. IV. Birmingham: Kynoch Press.
- KASPER, H. (1968). Z. Anorg. Allg. Chem. 356, 329-336.
- NARAY-SZABO, C. V. & SASVARY, K. (1938). Z. Kristallogr. 99A, 27–31.
- PAULING, L. (1924). J. Am. Chem. Soc. 46, 2738-2751.
- SCHMID, D. (1970). Oxotellurate(IV) des zweiwertigen Nickels, Kobalts, Mangans und Cadmiums. Dissertation, Univ. Frankfurt am Main.
- SCHULZ, H. & BAYER, G. (1971). Acta Cryst. B27, 815-821.
- SLEIGHT, A. W., FORIS, C. M. & LICIS, M. S. (1972). Inorg. Chem. 11, 1157–1158.
- STEWART, J. M., KRUGER, G. J., AMMON, H. L., DICKINSON, C. & HALL, S. R. (1972). XRAY system. Tech. Rep. TR-192. Computer Science Center, Univ. of Maryland, College Park, Maryland.
- Ткомец, М. (1972). J. Appl. Cryst. 5, 241–242.
- TRÖMEL, M., MAETZ, J. & MÜLLNER, M. (1977). Acta Cryst. B33, 3959–3961.
- TRÖMEL, M. & ZIETHEN-REICHNACH, H. (1970). Z. Anorg. Allg. Chem. 378, 232–237.
- WROBLEWSKA, J., ERB, A., DOBROWOLSKI, J. & FREUNDLICH, W. (1979). Ann. Chim. (Paris), 4, 353–358.
- WUENSCH, B. J. & PREWITT, C. T. (1965). Z. Kristallogr. 122, 24–59.